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Thermoemission (dust-electron) plasmas: Theory of neutralizing charges
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Thermoemission plasma—i.e., a system consisting of dust grains and electrons—is studied. In the proposed
model, it is assumed that the major part of the electronic gas is uniformly distributed in space and the spatial
inhomogeneities of electronic density exist only near the dust grains. The experimental data, well described by

the proposed theory, are given.
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I. INTRODUCTION

The combustion of metal powder in an oxygen medium is
a perspective method of obtaining of high-purity submicron
metal oxides. A low-temperature plasma with condensed dis-
persed phase [1,2] is formed in the region of condensation of
the products of combustion of metal powder cloud burns.
Such plasma consists of gas at atmospheric pressure and
solid or liquid dust grains, resulting from volume condensa-
tion or the particles being of not-burnt fuel. The absolute
temperature of such plasma is usually about 1500-3500 K
(0.1-0.3 eV), and the system is considered isothermal.

When the plasma contains easily ionizable additional
agents of alkali metals with higher number density, the atoms
of these alkali metals act as the basic suppliers of free elec-
trons and singly charged positive ions. In such a plasma, the
condensed dust grains can be charged both positively and
negatively, depending on the relation between the chemical
potential of the plasma electrons and the electronic work
function from the condensed grain. The interaction between
the condensed and gas phases is of complex nature and can
lead to the formation of ordered structures [3-5].

When the atoms of alkali metals are the natural impurity,
the number of ions in the plasma is negligibly small com-
pared to the number of electrons, formed as a result of ther-
mionic emission from the surface of the condensed dust
grains. Such a plasma is called thermoemission plasma. The
general feature of thermoemission plasma is the presence of
only positively charged dust grains and electrons, emitted by
these grains. Therefore, another name for such a system is
dust-electron plasma [6,7].

The present paper is dedicated to the development of a
theoretical model of thermoemission plasmas, complying
with the experimental data, obtained while investigating the
plasma formed during the combustion of metal powders.

II. STATE OF THE PROBLEM

The potential spatial distribution around a single dust
grain can be described by the Poisson equation

Vg =—4p, (1)

where ¢ is the electrostatic potential; p is the density of
charge, thus p=—eN in the space between dust grains in the
thermoemission plasma; N is the electron number density.
It is necessary to set the boundary conditions for Eq. (1),
which is not an easy problem, like the one Einstein faced in
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cosmology [8]. When electronic gas is in equilibrium with
the condensed grains, the Boltzmann distribution law
N~exp(e/T) for electrons is valid. To the finite difference
of potentials there corresponds the finite ratio of electron
number densities; therefore, to the zero value of electron
number density on the perpetuity there is a corresponding
zero density at the grain surface. Otherwise, to the condition
N(%0) — 0 there is a corresponding requirement ¢()— —o0,

This difficulty cannot be overcome within the limits of
usual Poisson-Boltzmann theory. Therefore various ap-
proaches are used to select the best suitable boundary condi-
tions. For example, the charge density can be represented as
a set of electrons subject to the Boltzmann factor and the
uniformly distributed positively charged dust grains [9,10].
In Refs. [1,11,12], on the contrary, the Wigner-Seitz model is
used, where the system of dust grains is represented as a
system of cells with radius

4 -1/3
RW= (g’ﬂ'}’ld> s (2)

where n, is the number density of the dust grains.

The potential is minimum at the cell boundary and
¢'w=0. It is suggested to solve the “flat” task at the grain
surface, then make a renormalization of the potential and
transfer it to the spherical symmetry. This model excludes
the existence of monotonous spatial distribution of the po-
tential, though such a possibility is demonstrated by the nu-
merical modeling.

The attempt to make a model of thermoemission plasma,
using charged planes as an example, has been made in Refs.
[13,14]. Tt is supposed that there is such point r«, where
potential ¢(r+)=0, and the electron number density in this
point complies with condition (87re?/T)*N.=1. Three kinds
of solutions have been considered: the case of semi-infinite
plasmas, the case when the minimum potential exists in the
center between the planes (it is similar to the model of the
Wigner-Seitz cells [1]), and the monotonous potential distri-
bution between the planes. The disadvantage of such a model
is the groundlessness of the existence of a nonzero electron
density at the point of zero potential.

Thus, one can see that the description of the thermoemis-
sion (or dust-electron) plasma is a nontrivial problem. Ein-
stein proposed to modernize the Poisson equation, having
postulated that there is some value of the potential ¢, which
corresponds to the uniform distribution p=p, in space. In the
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present paper, the model of the thermoemission plasma,
based on this suggestion, has been considered.

III. THEORETICAL MODEL

Let us consider the system of condensed dust grains with
the same temperature 7~ 0.3 eV. The dust grains at such a
temperature emit electrons and, in the state of thermody-
namic equilibrium, the grain charge and the electron number
density at the grain surface are defined by the equality of the
fluxes of thermionic emission and uptake of electrons by
grain. The surface electron number density is constant and
described by the Richardson number density [1]

-W
N, = -, 3
(= veexp )

where v,=2(m,T/2mh?)>*? is the effective density of the
electron states, m, is the electronic mass, 7 is the Planck
constant, and W is the electronic work function from the
condensed grain.

The charge of the grain is screened by the electrons;
therefore, the potential changes substantially only in the thin
layer at the grain surface. Accordingly, the electron number
density changes only in this layer. In the rest space between
the grains, the electron number density has some constant
value N, for which there is some corresponding constant
value of potential ¢, [20]. Thus, the potential of the grain
surface, with respect to ¢, is determined by the relation of
the surface density Eq. (3) and N,,

T N,
¢s - e 11'1 N() ’ (4)
where ¢s= b5~ Po-

On the other hand, the potential barrier on the plasma-—
dust-grain boundary is determined by the difference between
the electronic work functions from the dust grain and from
the plasma.

The average electron energy is equal to 37/2 in the iso-
thermal system. Then, it is possible to determine the
formal work function of the electron from the plasma

W,=3T/2~u,, where w,=TIn(N/v,) is the chemical poten-
tial of electrons. Thus, if the electronic work function from
the dust grain Wy=W,,, then the potential barrier is absent
and in this case the surface density N,=Nj is the equilibrium
value. The uniformly distributed electronic gas would neu-
tralize the charge of the grains with the electronic work func-
tion W,

Thus, the dust grains with an electronic work function of
Wy=W,, and electronic gas with number density of N, create
a uniform background of neutralizing charges, which is simi-
lar to the model of one-component plasmas [15-19]. If the
electronic work function differs from W), the electron num-
ber density at the grain surface changes, the potential of the
surface @, # ¢, (¢,#0) changes too, and there is a field
forming a boundary sheath.

Generally, the condensed dust grains are of different sizes
and composition. Therefore the charge neutrality of the sys-
tem is described by the equation
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where Z; is the charge number of a grain of kind j, with

number density n;; N is the average electron number density.

The dust grains with electronic work function W;<W,
obtain additional positive charge, which provides for the
electron surface density N,;> N, so that the thermionic flux
is equal to the flux of electron absorption. For dust grains
with electronic work function W, > W, the background elec-
tron density N, is higher than is needed for equilibrium be-
tween the electronic gas and the dust grain. Therefore, the
grain potential should be less than ¢, which provides for a
field that decreases the absorption of electrons so that the
inequality Ny <N, takes place.

Therefore, the charge density in Eq. (1) can be defined as
the deviation of the electron number density from N,

p=—eN0(expe—;b— 1), (6)

where ¢=¢—@,.

In this case, the Poisson equation for the electronic gas
between the dust grains in the dimensionless variables
®=e¢/T and x=r/\, can be defined in the following form:

V20 =exp(P) - 1, (7)

where \o=\T/4me’N, is the screening length.
The background number density N, is always less than

the average electron number density N, as the solution Eq.
(7), having a minimum value, cannot cut the direct line ¢y.
From Eq. (3) it follows that

-W, - -3 _
Ny=v, exp—TEZ:NexpT =(.2N. (8)

The statement of the problem in the form of Eq. (7) con-
siderably simplifies the choice of boundary conditions. In
particular, for a single grain, it is possible to apply boundary
conditions in the form ®(x)=®’()=0. In this case, it is
possible to derive the potential distribution around each dust
grain with respect to the bulk potential ¢.

There is no need to solve Eq. (7) completely to describe
the interaction between the condensed dust grains in the ther-
moemission plasma. It is suffice to determine the charges of
the grains and the fields they create, as the force and the
direction of interaction are determined by the field.

IV. CHARGES OF CONDENSED DUST GRAINS

The charge of a dust grain is defined by the number of
electrons in the Wigner-Seitz cell—i.e., in the sphere with
radius Ry, [Eq. (2)], which surrounds the grain with radius a;,

Rw
Z;= 47'rj r*N(r)dr. 9)
aj
The electron number density in Eq. (9) consists of the
constant component N, and the deviation

),

daertdr\ dr

n(r) =
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Then, from Egs. (9) and (10) we obtain

4 ,d¢
Z= gw(Riv—aj.)Nﬁ e(r —)

dr (1)

4j

On the boundary of the Wigner-Seitz cell ¢’ =0 (or ~0);
therefore, from Eq. (11) it follows that

Z] = (VW_

where Vyy=1/n, is the cell volume, Vj=(4/3)77aj- is the vol-
ume of grain j, and Ej; is the field near the surface of the
grain j. Here, we assume that the difference in sizes of dif-
ferent kinds of grains is small; therefore, the common radius
of the Wigner-Seitz cells will not strongly affect the accuracy
of calculation.

For the small charges of condensed dust grains it is pos-
sible to linearize Eq. (7),

V)No + (1/e)d;E,;, (12)

2
"+ =P = . (13)
X

The proposed model allows one to use the boundary con-
dition ®(e0) —0. Therefore, for the single dust grain, the
solution of Eq. (13) is the well-known Debye-Hiickel poten-
tial

ai—r
b= % eXp%\ ; (14)
0

thus, the field at the grain surface is

1
¢Y,(aj x0) (15)

and the grain charge number is
bgjaj(a; + No)

Z,=(Vy— V)Ny+
' ( w ]) 0 67\0

For the dust grain with radius a> \, Eq. (7) is reduced to
a “flat” form

Q" =exp(P) -1, (16)
whence for () —0, ®’() —0 we obtain
P’ = +\2\exp(®) - D - 1. (17)
Accordingly, the field at the grain surface
~
Sj=sg‘n(\§ﬁ\/exp%z—e—ffz—l. (18)

The numerical simulation demonstrates [5] that a good
result, applicable to any radius and charge of the grain, can
be obtained by formal integration of Egs. (15) and (18):

VZ(a +)\0)T\/ e_¢sl e_l . (19)
Sgn(¢v)ea )\0 .

sji=

This expression, at small potentials, is transformed into
Eq. (15) and at greater grain radius into Eq. (18). The use of
Eq. (19) allows one to determine the grain charge number,
taking into account Eq. (4), as
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\2a ai+Ny)T N
2= (Vig— VN + “20i0+ 2T V2a,a;+N)T [Ny
sgn(e)e’Ny VN,
(20)
For the thermoemission plasma the relation a <<\y~ Ry is

typical, accordingly Vy>V,. In this case Eq. (20) can be
NO \r2a T

reduced to
\ / -1. (21)
ng Sgl’l( ¢Sj

For the monodisperse distribution of grains, from Egs.
(5), (8), and (21) we obtain

Ny aT N N
_04—L -In—>-1. (22)

ng No Ny
This equation allows one to determine the background
density N, after which it is possible to determine the grain
charge [Eq. (20)] and the average electron number density

[Eq. (8)].

V. COMPARISON TO EXPERIMENTAL DATA

The experimental data [21,22] were obtained in the low-
temperature thermal plasma of atmospheric pressure, con-
taining dust grains of cerium dioxide (W=2.75 eV) with the

following parameters: absolute temperature 1700 K
(T=0.15eV), grain radius a=0.4 wm, grain number
density n,=5X%10" cm™, electron number density
N~5%10'" cm™, and average charge number Z~ 1000.

The calculations, mentioned in Ref. [13] using the model
of the charged planes, produce the average charge number
Z=13, which the author has explained by the uncertainty of
the electronic work function and infringement of the thermo-
dynamic equilibrium.

The solution of Eq. (22) gives the background number
density  Ny=1.15x10""cm™;  accordingly, N=5.23
X 10'% cm™3; the average charge number Z=1046; and the
relative surface potential ¢;=0.78 V (5.3T/e). The work
function, corresponding to the neutralization of the electronic
gas, is W;=3.53 eV. Hence, if in such a system there are dust
grains with electronic work function over 3.53 eV, their rela-
tive potential will be negative. Apparently, the proposed
model of neutralizing charges describes well the experimen-
tal data in line with the thermodynamic equilibrium.

Let us use the experimental data, obtained in the plasma,
which exist in the two-phase flame while burning the metal
dust clouds [23]. In this case, a thermoemission plasma is
formed in the area of condensation of the metal oxides. The
thermoemission plasma of the grains of aluminium oxide
(W=4.7 eV) has the following parameters: absolute tempera-
ture 3150+£70 K (7=0.27 V), grain radius a=0.05 wm,
grain number density n,=10'" cm™, and electron number
density N~ 1.5x 10'2 cm™.

The solution of Eq. (22) gives the background number
density Ny=3.2X 10" cm™, the grain charge number
Z=147, and the relative surface potential ¢,=1.1V
(4.4T/e). The calculated average electron number density is
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FIG. 1. The calculated (solid line) and measured (dots)
(Ref. [24]) charges of the magnesium oxide grains.

N=1.47x10" cm™, which corresponds to the measuring
data.

The following experimental data [24] have been obtained
while studying the combustion of magnesium [25] at various
pressures: P=(0.1,0.2,0.5,1) X 10° Pa. In the area of con-
densation, dust grains of magnesium oxide with average ra-
dius a~0.05 um are formed. The temperature of the ther-
moemission plasma was measured using the spectral method,
T/kz=(2540,2570,2600,2630) K. The number densities of
the oxide grains are n,=(0.02,0.15,2.5,5) X 101 em™3.

The charge of the grains was measured by their deposition
on the electrode. The mass of the deposited grains was com-
pared to their average volume. In Fig. 1, the results of mea-
suring of the grain charges and the result of calculation, in
which the electronic work function W=3.9 eV has been
used, are presented.

The electron number density was measured using
the probe method at the pressure P=0.1X10° Pa: N,

expt
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=(5+3) X 10" cm™3. The calculated value at this pressure is
N=2.6X10" cm™,

VI. CONCLUSIONS

The model of neutralizing charges corresponds to the ex-
perimental data and can be used to describe the processes of
dust grain interactions in the thermoemission (dust-electron)
plasma. The mismatch was observed only in one case, which,
as the author of the experiment of Ref. [24] explains, results
from a great measurement error under conditions of low
pressure.

The advantage of the model of neutralizing charges is the
use of the bulk potential ¢, which allows one to describe the
polydisperse thermoemission plasma. In this case, grains of
each kind are characterized by their own potential distribu-
tion with respect to ¢, [3]. The superposition of the potential
distributions around different grains gives a view of the total
potential distribution pattern in the system. This distribution
can make the field between the grains provide for their at-
traction or repulsion. If the surface potentials of the two
neighboring grains have different signs with respect to the
bulk potential, the grains attract. If the relative surface po-
tentials are of identical signs, the grains repulse.

It should be noted that in the considered experimental
results, the relative potential of the grains ¢,>T/e. It means
that the linearization of the Poisson-Boltzmann equation can-
not be used to describe real dust-electron systems.
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